Adaptive Neural Network-Based Predictive Control for Nonlinear Dynamical Systems
نویسندگان
چکیده
In the paper, we propose a predictive control scheme using a neural network-based prediction model for nonlinear processes. To identify the system dynamics, we approximate the nonlinear function with an affine function of some of its arguments and construct a special type of prediction model using three-layered feedforward neural networks. Using some available inputoutput data pairs of the plant, we estimate the weights of neural networks by the Gauss-Newton based Levenberg-Marquard method. To cope with load disturbances and reduce the effect of unmodelled dynamics in the control system, we implement an on-line adaptation algorithm. Comparative simulations are given to show superiority of the proposed predictive control method to the adaptive GPC algorithm for some processes.
منابع مشابه
Neural-learning Control of Nonlinear Systems Using Variable Neural Networks
This paper is concerned with neural-learning control of nonlinear dynamical systems. A variable neural network is introduced for approximating unknown nonlinearities of dynamical systems. Based on variable neural networks, adaptive neural control and predictive neural control schemes are studied. In the adaptive neural control scheme, the weight-learning laws and adaptive controller developed u...
متن کاملAdaptive Neural Network Method for Consensus Tracking of High-Order Mimo Nonlinear Multi-Agent Systems
This paper is concerned with the consensus tracking problem of high order MIMO nonlinear multi-agent systems. The agents must follow a leader node in presence of unknown dynamics and uncertain external disturbances. The communication network topology of agents is assumed to be a fixed undirected graph. A distributed adaptive control method is proposed to solve the consensus problem utilizing re...
متن کاملReal-Time Output Feedback Neurolinearization
An adaptive input-output linearization method for general nonlinear systems is developed without using states of the system. Another key feature of this structure is the fact that, it does not need model of the system. In this scheme, neurolinearizer has few weights, so it is practical in adaptive situations. Online training of neuroline...
متن کاملAdaptive Predictive Controllers Using a Growing and Pruning RBF Neural Network
An adaptive version of growing and pruning RBF neural network has been used to predict the system output and implement Linear Model-Based Predictive Controller (LMPC) and Non-linear Model-based Predictive Controller (NMPC) strategies. A radial-basis neural network with growing and pruning capabilities is introduced to carry out on-line model identification.An Unscented Kal...
متن کاملAdaptive Leader-Following and Leaderless Consensus of a Class of Nonlinear Systems Using Neural Networks
This paper deals with leader-following and leaderless consensus problems of high-order multi-input/multi-output (MIMO) multi-agent systems with unknown nonlinear dynamics in the presence of uncertain external disturbances. The agents may have different dynamics and communicate together under a directed graph. A distributed adaptive method is designed for both cases. The structures of the contro...
متن کاملCalibration of an Inertial Accelerometer using Trained Neural Network by Levenberg-Marquardt Algorithm for Vehicle Navigation
The designing of advanced driver assistance systems and autonomous vehicles needs measurement of dynamical variations of vehicle, such as acceleration, velocity and yaw rate. Designed adaptive controllers to control lateral and longitudinal vehicle dynamics are based on the measured variables. Inertial MEMS-based sensors have some benefits including low price and low consumption that make them ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Intelligent Automation & Soft Computing
دوره 9 شماره
صفحات -
تاریخ انتشار 2003